Analysis of a Quadratic System Obtained from a Scalar Third Order Differential Equation
نویسندگان
چکیده
In this article, we study the nonlinear dynamics of a quadratic system in the three dimensional space which can be obtained from a scalar third order differential equation. More precisely, we study the stability and bifurcations which occur in a parameter dependent quadratic system in the three dimensional space. We present an analytical study of codimension one, two and three Hopf bifurcations, generic Bogdanov-Takens and fold-Hopf bifurcations.
منابع مشابه
Numerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملThe Quantum Cosmological Wavefunction at Very Early Times for a Quadratic Gravity Theory
The quantum cosmological wavefunction for a quadratic gravity theory derived from the heterotic string effective action is obtained near the inflationary epoch and during the initial Planck era. Neglecting derivatives with respect to the scalar field, the wavefunction would satisfy a third-order differential equation near the inflationary epoch which has a solution that is singular in the scale...
متن کاملVibration of Road Vehicles with Non linear Suspensions
In order to investigate the effects of non-linear springs in vibrating behavior of vehicles, the independent suspension of conventional vehicles could be modeled as a non-linear single degree of freedom system. The equation of motion for the system would be a non-linear third order ordinary differential equation, when considering the elasticity of rubber bushings in joints of shock absorber. It...
متن کاملAn exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
متن کاملA New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems
In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...
متن کامل